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Abstract. The nature of three-magnon excitations in general spin-§ quantum spin chains is

studied using the recursion method. The asymptotic behaviour of the recurrence coefficients can

be used to identify the presence of bound states in the spectrum. Special features of integrable
. models are easily identified. '

1. Infroduction

Generalized Heisenberg spin chains with general spin S provide excellent opportunities to
study the nature of excitations in both infegrable and non-integrable systems. Bethe [1]
first showed how to obtain the eigenvalues and eigenvectors of the § = -% Heisenberg chain
using a method which is now called the Bethe ansazz. This same approach can also be used
for more general § > % models which have a permutation symmetry [2, 3]. More recently,
the Bethe arsatz has been related to the quantumn inverse scattering method [4] and the
nature of excitations in both ferromagnets and antiferromagnets has been investigated. This
has been followed by the identification [5, 6, 7, 8] of other 5 > 1 integrable models. In
general, the excitations can be classified according to their total wavevector K and their
total §2 = NS — m and are referred to as m-magnon excitations. Bethe’s results showed
that for m > 1 the excitations can be of two types: scattering states and bound states.

For the ferromagnetic case, the vacuum state has all spins aligned parallel and the
complete excitation spectrum consists of both bound states and resonant states within the
continuum of scattering states. However, the nature of excitations in the antiferromagnetic
case has been more controversial. In the case of the integrable models, the low-energy
excitations from the antiferromagnetic vacuum are gapless two-particle scattering states and
bound states do not exist at any value of S. The non-integrable models were expected
to have similar properties until the work of Haldane [9] predicted that the excitations for
integer values of § have a gap whereas for half-integer values there is no gap. The nature
of bound states in the antiferromagnetic case remains unresolved.

In the case of a ferromagnetic ground state, the one-magnon and two-magnon problems
can be solved exactly [10]. However, most investigations of the m-magnon problem
for m > 2 have been restricted to the integrable models, Haldane [11] considered the
ferromagnetic vacuum and has suggested that the bound and resonant type of m-magnon
states form p = min(m, 25} branches in the general model and that all branches are real
and continuous across p Brillouin Zones in an extended zone scheme for the integrable
models. In the non-integrable models, the branches enter the continuum and gaps occur
at the Brillouin zone boundaries. Chubukev and Kveschenko [12] studied the two-magnon
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problem for S = 1and § = % and used this criterion for the absence of gaps to identify
integrable models. However, as we shall demonstrate, one needs to study the 2S-magnon
problem to ensure integrability.

There have been relatively few papers which have considered three-magnon excitations
in the past. The studies of Majumdar [13, 14, 15] and Van Himbergen [16] were based on
the formalism developed by Faddeev [17], which treats the system in terms of spin waves
which can scatter off one another or bind together to form a stable complex. In these studies
the approach to the problem is very general but detailed solutions are given only for a one-
dimensional spin-% chain. In addition, it is difficult to identify non-physical states such as
those which correspond to raising a single spin by more than 25 and spurious solutions can
appear. Another study which posed the problem in a slightly different form (but using a
similar method of solution) was that by Millet and Kaplan [18]. These authors considered a
spin-§ model and also encountered a spurious solution for § = ‘5 Systems with § > % were
studied without such difficulties but results were obtained only for Heisenberg systems.

In the present work we describe 2 method to calculate three-magnon excitations in
ferromagnets. Our approach to the three-magnon problem maps it exactly onto an effective
tight-binding Hamiltonian. General properties are easily extracted for the most general
isotropic spin Hamiltonian for spin S. The special cases which correspond to completely
integrable models are identified with special properties of the three-magnon excitations in
agreement with Haldane. In the next section we describe the general S-model and outline
our method of solution. Qur results for the three-magnon excitation spectrum of various
spin-S models are given in section 3.

2. The model

We consider the following Hamiltonian for a chain of spin-S quantumn spins

N 28

H==3" 37 S €

i=1 n=l1

The interactions are restricted to pearest neighbours but further neighbours can also be
included as well as various types of anisotropies without difficulty. The Hamiltonian in (1}
is the most general form for spin § with SU(2) symmetry., The model with only then =1
term is the usual Heisenberg model. The special cases which are completely integrable
correspond to particular values of the J).

However, rather than use the J®, we will use certain linear combinations which are
most easily described by considering an isolated pair of nearest-neighbour spins. The
total angular momentum j of the pair can take the values j =0, 1, ..., 25 and the energy
eigenvalue of the pair in state j is

25
A== IO+ 1/2— 5SS+ DI )

n=1
It is convenient to define the eigenvalues with respect to the state of maximum j and ratios
of these quantities as follows:
0 (S) = Azs—m — A2s

&m(S) 3
m(S) = —==
gm{S) 1 (5)
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where m =0, 1, ..., 25. Note that go(S) = 0 and g1(S) = 1 for all values of the J™ in (1).
The advantage of using the g, (S) rather than the J is that the m-magnon problem only
involves the first m of the former combinations.

The known integrable cases correspond to the following choices of the g,,(5): the values
of the J® which yield the Schrédinger [2] exchange operator for general S correspond to

1—-{1"

gn(S) = 5 @
The values of the J® of Takhtajan [5] and Babujian [6] correspond to
gu(S) =25y (25 + 1) =¥ (2541 —m}] 5

where 1 is the derivative of the logarithm of the gamma function. This model is integrable
but still has SU(2) symmetry. The case corresponding to aas = 1 with all remaining &, =0
has been investigated by Batchelor and Barber [8]. They show that this corresponds to an
integrable model which satisfies the Temperly—Lieb algebra of the (25 + 1)2-state Potts
modei. Finally, the Heisenberg model for general S corresponds to

gm(Sy=m(48 +1 —m}/48. (6)

In the following, we assume that the ground state of (1) corresponds to the ferromagnetic
state [0} with all spins aligned along the negative z direction. The one-magnon eigenstates
are plane waves with excitation energy

E; = o (8)[1 — cos(K)]. (7

Hence the one-magnon energy is the same for all choices of the J® when the energy is
measured in units of & (S). For stability of the ground state with respect to one-magnon
excitations we require «;{S) to be non-negative. The two-magnon spectrum of the general
Hamiltonian {1} has been studied [19, 20} recently using a real-space rescaling approach.
The solutions depend upon the value of g,(S) with the excitations of the integrable models
having special features. However, these properties ate independent of the values of the
remaining g,,(3) for § > 1. Hence an § = % model may have features in its two-magnon
spectrurn. which suggest integrability but the three-magnon spectrum will not necessarily
have the same features since it depends on the value of g3(S) as well.

The three-magnon excitations are solutions of the Schridinger equation which can be

written in the basis of three-spin deviation states
Ir, 1, m) = 575 57%10) (r<lsm). . (8

Using centre of mass and relative coordinates for the sites r,! and m, we can express
the Hamiltonian in a2 mixed orthonormal basis |K; x, ¥}, where K represents the fotal
wavevector of the three-magnon state and x = [/ —r| and y = |m — | represent the relative
separation of the spin deviations in units of the lattice spacing a. In this mixed basis the



10078 B W Southern et al
Schrodinger equation can be expressed in the following tight-binding form:

(E—a)lK;x, 9 =V K x+ 1, )+ VIE;x -1, +ViIK;x—1,y+ 1)
+VIE;x+Ly—- 1+ VIK;x,y— 1)+ VIK;x, v+ 1}
(E-e|K;x, ) =VHK; x4+ 1, }+ VIK;x— 1, ) + V¥K;x — 1,2}
+ViK;x, 2y WK 2,004+ WIK; x4+ 1,0)
(E—ellK; L,y =V*[K; L,y -1} + VIK; Ly+ 1) + VIK; 2, 3)
+VIK; 2,y — 1)+ WHK; 0,y + 1} + WIK; 0, y)
(E—e|E; L, h=V"K; 2, 1)+ VIK; L,2)+ W*|K; 1,0)
+WIK;0, 1)+ W*K;0,2) + W|K; 2,0 9
(E—-a)|K;x, 00 =V|K; x4+ 1L,0) + V1|K;x — 1,0}
+W*K;x — 1,1} 4+ W|K; x, 1)
(E—&3)|K: 0, y) = WIK; 0,y — 1} + ViK;0,y+ 1)
+WHK; Ly + WIK: 1,y — 1}
(E—-e)|K; 1,00 =U*K;0, 1} + VF|K; 2,00 + WIK; 1, 1) + V| K 0,0)
(E—e)IK;0,1} =UIK; 1,00+ ViIK; 0,2} + WK 1, 1) + VIK; 0,00
(E—eo)lK;0,0) = V5K;1,0) + Vo|K; 0, 1)
where the energy F is measured relative to the ferromagnetic ground state Eo = NX,s and

both x and y are = 2.
The various parameters appearing in the equations above are given by

£0=35(5 — 1) [ai(S) [1—cos(K)] + 22(S5) (1 +cos(X)] | o3(S) [l —cos(K )]]
S@4S —3) (§—D@ES—-1) ' 3(S-1@ES-3)
1335 — 2)eu(S) | (35 — Dea(S) . 3(S — Das(S)
f1= E[ (45 = 3) (45— 1) (45=3) ]

25—
45 —

= (SH+2 ( ) oz(S)

28
&3 = 201(8) + 0!2(5)

(45 —
&4 = 2001(8) + (ig : :) 02(85)
P —3&1(3) (10}
_ ASG D (A -2y (SHA+EP) oS - )
Vo= _C 3565 -1 [ @s—3  @s-1  @5—-3 ]
_ é'[ Sy (S) + (1-S}n(s) 3(1- S)th(S)]
(@45 -73) @ds—1 @5 —3)
3 . 250%05(8)
Vi= —“z'é' [0«’1(5')(1 +1) ~ @s—1) ]

B JS@S=T1)
AT

V= —ta(s)
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where ¢ = exp(iK /3) and the wavevector K lies in the range —n < K < . The above
cquations can be represented graphically as shown in figure 1.

The system corresponds to a semi-infinite triangular lattice with a surface along the
positive x and y axes. These surfaces describe states where two deviations are on the
same site and the origin corresponds to the state with three deviations on the same
site. The effective tight-binding Hamiltonian has six different types of diagonal terms
{c0. &1, €2, &3, &4, £) and five different types of coupling (Vy, U, W, V, V). All are functions
of §, K, g» and gz and the off-diagonal termas are complex functions of K.

Y e U
—- W
Ty
(? ® :
18 ke
\‘ ¢ :
@ &
s . g,
X
- <,

Figure 1. Graphical representation of the general three-mapnon Hamiltonian acting on states
1K, 9}

The site coordinates label the values of x and y in the ket |[K;x,y) and the lines
connecting the sites represent the interactions between kets. The arrows indicate that the
interactions are complex. When the Hamiltonian acts on the ket at any site, it yields a
linear combination of up to seven kets. These kets include the one acted upon and the six
nearest neighbours. The coefficient of the self-term is the appropriate ¢ for that site and
the coefficients of the neighbouring kets are the interaction parameters (U7, W, V, V,, V})
corresponding to the type of line connecting the neighbours. If the arrow on the line is
pointing towards the site acted upon, then the complex conjugate of the interaction should
be taken. : N

A simple example can be read off the figure as follows: suppose the effect of H
on |K;1,1) is desired. Since |K; 1,1} is equivalent to (x, ¥) = (1, 1) on the diagram
the seli-term involves &;. The interaction lines connect this site to (1,2),(2,1) and
©, 1), (1,0, 2, 0, (0, 2) which correspond to the interactions V' and W respectively. Half
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of the arrows point towards (1, 1) and hence the net effect is
ﬁlK; Ly=alK; L, 1+ VYK 2, )+ V|K; 1,2) + WNK;1,0)
+WIK 0, 1)+ WHK: 0,20+ WIK: 2,0

as given in (9).

For § = %, the system of equations represented by figure 1 separates into two groups
of states. Sioce the x and y coordinates represent the separation of the spin deviations,
clearly the edges and the apex at the left are unphysical as these have x and/or y equal
to zero and correspond to a single spin being raised by more than one deviation. When
the parameters which describe the Hamiltonian (go, &1, ++- &4, £ Vo, Wi, V, U, W)
are evalvuated, the unphysical layer completely decouples from the rest. Graphically, this
unphysical Hamiltonian takes the form shown in figure 2.

Y
A
/l
r <= V
.’,/
l/‘ T
rd
X &
-~ El
N, =
‘”\
l\‘
‘\\'
a
X

Figure 2. Graphical representation of the unphysical part of the three-magnon Hamiltonian for
1

=4

The equations for these ‘surface’ states contain an unphysical solution £ = % which
is independent of K. This solution was also found in previous studies [18] of the S = -;-
model but was difficult to eliminate. In our approach, these unphysical states are clearly
identified. The remaining ‘bulk’ states are the physical states and the solutions correspond
to those found by Bethe [1].

Before we describe our general approach to solving these equations, we will first
consider the § > % integrable cases. When the g, have the values corresponding to
(4), the Hamiltonian has SU(25 + 1) symmetry and there is again a decoupling of the states
with two deviations on the same site from the rest as shown in figure 3, In addition, the state
with three deviations on the same site is also completely decoupled and the corresponding
solution for the energy E = gy = 01(8) (I — cos(K)) is degenerate with the one-magnon
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Figure 3. Graphical representation of the SU(2S + 1) three-magnon Hamiltonian.

- energy. This state is of course unphysical for § £ 1. The equations for the states with two
deviations on the same site can be written in the form of a semi-infinite chain and have
solutions which are identical to the two-magnon spectrum of the § = % model but with the
energy mutliplied by o;(S): there are scattering-state solutions in the range

2m (1 — cos (-‘;)) <SE<m (1 +cos (g))

and a two-magnon bound-state solution with E = %al(l — cos(X)). The remaining “bulk’
equations are identical to the § = % case and the solutions have the same form as that found
by Bethe for m = 3 with all energies scaled by o;(S): there are scattering states of three
free magnons which form a continuum in the range

K
3 (1 — cos (?)) < E <3y (1 - CO8 (ZN:K))

as well as a two bound/one free continuum in the range

3 5 3 5 ‘
oy (E-w—‘fz +cos(K) ' SE<ay (§+1f 7 +§OS(K) ' .

These two continua overlap with the three free giving the maximum energy at any K
and the two bound/one free giving the minimum energy. There is also a three-magnon
bound state below these continua with energy E =-%a1 (1 — cos(K)). Thus the following
general pattern emerges for this integrable case of SU(2S + 1) symmetry: for the general
m-magnon problem the system decouples into separate groups of equations for the states
involving » = 1,2, ..., m deviations on a single site. Each of these groups has solutions
identical to the (m — n + 1)-magnon spectrum of the § = § model. The SU(2) integrable
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case given by (3) does not yield a decoupling of the basis kets and must be investigated
directly using the method decribed below.

In order to obtain information about the spectral properties of the general Hamiltonian
in (1), we have used the recursion method [21] to transform this triangular system to a
semi-infinite chain. This provides a continued-fraction representation of the local Green’s
function which can easily be used to calculate the local density of states. The method is
based on a three-term recursion relation of the form

7?"'-'l'n = O Uy + Dpp1Ung1 + BaUn—1 (11)

where a,, b, € R and u,, is the nth state of an arbitrary complete orthonormal set of states.
To start the procedure, we define u_; = O and choose some arbitrary normalized state
vector ug. A second normalized state vector, u;, is obtained from

’)‘?uo = aptg -+ b1 (12)
Taking 1, to be orthogonal to ¢y it follows that

ag = u}Huo (13}

byuy = Huo — aguo (14)

where b is the normalization factor for «;. Once we have the first two vectors, we can
use (11) to generate the rest. In general, (14) is replaced by

b1 Unt1 = Http — @ytty — bpin—;

where b, is the normalization factor for up.;. By iterating this procedure, the set of
vectors {u,}, can be found which will transform the Hamiltonian to the desired canonical
form and the resulting tridiagonal matrix will contain the a, and &, as its elements. In the
new basis the Hamiltonian satisfies

Uup ap b o
—~ U bl [25] bz 0 Uy
H w | = by a b Us (15)
. 0 .

and corresponds to an inhomogeneous nearest-neighbour tight-binding chain.

If we take the lattice shown in figure 1 and consider the columns of sites with the
same index n = x + y, then for any choice of initial ket in the three-magnon basis,
g = |K; x, ), each successive application of the above procedure can only couple to the
kets in neighbouring columns. For example, if 1up = |K; 0,0}, then after the first iteration,
4y involves the kets |K; 1,0} and [K; 0,1}. The second iteration yields a u, which can
involve some combination of |K; 1,0} and |X; 0, 1), which is linearly independent from
uy, as well as terms involving |K'; 2,0}, |X;0,2) and |K; 1, 1}. The new state formed at
each iteration is constructed to be orthogonal to the previous two states, and thus only these
two states need be stored to find the next basis state . The precise valees of the a, and b,
generated will depend upon the choice of initial ket.

For the infinite system of equations represented by figure 1, the recursion process
continues indefinitely and this raises the question of when and how to stop the procedure,
There are a number of possibilities [22, 23, 24] for the behaviour of the coefficients a,
and b, as a function of n. The coefficients may approach constants, approach some kind
of periodic oscillations or behave in a more complicated fashion. The asymptotic form for
the coefficients is determined by the scattering states of the spectrum. If these states are
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composed of overlapping continua with no” gaps, then the coefficients approach constant
values which are determined by the maximum and minimum values of the overlaping
continua. For the three-magnon case, these continua have energies equal to either the sum
of 3 free magnons or two bound and one free. For S > 51 there can be more than one two-
magnon bound-state branch and there is a continuum corresponding to each branch. If the
superposition of the continna leads to internal gaps in the continuum, then the asymptotic
form of the coefficients can be more complicated [24] and will depend upon the values of
the energies at the edges of the gaps as well. In each case, once the asymptotic behaviour
is reached, the iteration process can be terminated and the remaining coefficients can ‘be
obtained using the asymptotic form. In our case, knowledge of the complete two-magnon
spectrum is all that is required to predict this behaviour. )

As an illustration of the method, we will fitst consider the case of § = %_ where our
Hamiltonian reduces to the case solved by Bethe. Since each ket in our initial ket space
is labelled by the total wavevector K, we carry out the procedure for fixed K. When
the recursion method is applied to any state contained within the physical part of the
Hamiltonian the resulting coefficients rapidly converge (~ 20 iterations) to nearly constant
values. However, internal Van Hove singularities ih the three free or two bound/one free
magnon continua may produce visible oscillations [22] which are still noticeable 2t this
stage. It is therefore necessary to continue the method 'well beyond 20 iterations to reach
the asymptotic form. ’

For the § = % case, the asymptotic values of the -coefficients a, and b, afe determined
as follows:

ap = (Emax + Emin)/2
bn - (Emax - Emin)/4 (16)

where Ena and Epy, are the maximum and minimum energies of the scattering-state
solutions and are given by

Emax=3{1 —cos(zﬂ:K)}
(17)
3 {5
Enin = [5 ~V3z -I-COS(K)} )

Hence, at K = =, the coefficients @ and b should approach the values 3.5 and 1.25
respectively.

The a,, b, generated by the recursion method with 285 iterations at X = & are shown
in figure 4 using the initial choice of ket up = |K; 1,1). There are significant variations
in the coefficients initially but they appear to approach the expected limiting values after
~ 30 iterations. However, as the procedure is continued further, the coefficients exhibit
anomalously large deviations from the values to which the coefficients should converge.
For example, using single-precision calculations in Fortran. 77 ‘the anomalous deviations
repeat fairly regularly with a period of approximately 34 iterations 'and the first appears
at the 38th iteration. However, these deviations can be shown to be s:ﬁctIy numerical
in origin by calculating the recursion coefficients at various precisions. By changing to
double-precision, the first deviation does not appear until the 77th iteration and the period
of repetition is almost exactly double at 67 as shown in figure 5. Performing the calculation
at quadruple precision moves the first deviation to the 152nd iteration.

At a first glance, this behaviour appears to be an unusual case of oscillations in the
coefficients, which normally indicates a gap in the continnum [24]. The exact solutions 1]
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do not exhibit any such gap, but we can imagine one to be present if the bound state below
the continuum is treated not as a delta function, but as having a very narrow but finite width
equal to the machine zero for each precision. In the case where real gaps are present, the
asymptotic behaviour of the coefficients is described by hyperelliptic (or Abelian) functions
[24, 26]. In the limit of narrow bands these functions tend to have relatively abrupt peaks or
valleys separated by wide flat regions and are similar to soliton profiles [25]. The paper by
Turchi et af [24] gives a detailed analysis of a band with one gap which requires knowledge

B W Southern et al
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Figure 4. Single-precision coefficients a, &, for § = % akK=m

Q 100 200
Iteration Number n

Figure 5. Double-precision coefficients a,, b, for § = % ak=m.
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of the energies of the edges for each band. In the present case, at K = x , the energies
for the scattering-state band lie in the range 1 to 6 (in units of ¢4) and there is 2 bound
state at % Taking the double-precision case and the machine accuracy to be approximately
10~14, the energy bands extend from (Ey, Ez) = (3— 10;4, §+ 1Y and (E3, Es) = (1, 6).
The period for the index for the recursion coefficients, én, is re]atcd to the ratio of two
elliptic integrals evaluated over the regions outside the bands, Following the analysis in
section 4.5 of the paper by Turchi et al [24], we cobtain the value §n = 67 (for the nearest
integer) which is in agreement with the observed period in figure 5. When the calculation
is generalized to an arbitrary narrow band width, y, centred on the bound-state energy,
we find that 6n o¢ —In(y) and that the maximum (or minimum) of the deviations in the
coefficients a, is equal to the binding energy of the bound state. If the bound state is below
the continuum, the deviations are negative, but if it is above, they are positive. Thus the
asymptotic behaviour of the recursion coefficients gives direct evidence about the location
of bound states. )

-Another method of analysis which supports the above interpretation is to study
neigbouring pairs of the coefficients using phase space plots. Turchi er al [24] derived
recurrence laws for the coefficients by examining the asymptotic form of the continued
fraction. For a single gap, equation (4.29) of their paper shows that any pair of neighbouring
coefficients (4, B) = (an, b2_,) or (a,, b2) satisfy

(A% + A1A + 424+ 2B) = X(~41 — A) (18)

where
1 4
Ap=—z E E;

ZE E; — —A2 (19)

I<_]

X)) = H(E,v —x).
=l
Equation (18) can be viewed as a relation in the phase space of @, and b2 and is dependent
upon the values used for the energies of the four band edges. A change to any of the
energies can alter its graphical appearance significantly. A phase space plot is shown in
figure 6 for our doublc-precxsion cocfﬁcienf calculation. The solid line is obtained from
(18), taking £y = 2 — 1= E, = 2 24102 Fy=1and Es = 6 and the two types of
symbols represent (a,,, bz) and (a,, b —1) pa.u's. The first 50 coefficients have been ignored
as the analysis is valid only in the asymptotic region.

The iterations where the coefficients are essentially constant appear at the Iower right-
hand corner whereas the deviations are distributed along the rest of the curve. The maximum
deviations in A are 0.33 which is the energy difference between the lower edge of the
scattering-state continuum and the three-magnon bound state.

The excellent agreement of the phase space plots with our calculated coefficients and
our ability to predict the period and amplitude of the anomalous deviations are convincing
arguments for regarding the deviations as simply due fo numerical limitations of the
computer system which was vsed. These limitations result in a non-zero width for the
bound state but do not affect the energy of any bound state or band edges. Hence, these
deviations can be ignored and the recursion coefficients can be replaced by their asymptotic
constant values after ~ 30 iterations.
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21
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19

181

1.7

16

1.5

a1 az 34 34 a5 36
A

Figure 6. Phase space plot of pairs a,, b2 (denoted by o) and a,, b2_; (denoted by +). The
solid line is obtained from (28) and (19).

The local density of states corresponding o the initial ket w4y can be obtained directly
from the continued-fraction representation of the Green’s function in terms of the coefficients
a, and b,. Thus, the information about the location of bound states can be obtained
either from the density of states or from the anomalous behaviour of the coefficients in
the asymptotic region. Each set of coefficients is calculated at a fixed value of X and the
information obtained in this way can then be combined to show the dispersion curve for
the bound-state branches. The method can be applied to the general Hamiltonian in (1) as
it does not require the model to be integrable.

3. Results

Consider first the § = 1 Heisenberg model at X = x. The coefficients obtained using
the initial choice of ket ug = |K; 1, 0} are shown in figure 7. The coefficients approach
constant values asymptotically but exhibit two separate sets of deviations, both of which
are due to the limitations of the computer system used to calculate them. These deviations
indicate the presence of two bound states below the continuum at this value of XK. This
interpretation is confirmed by calculating the density of states vsing 500 coefficients and a
constant termination procedure, Figures 8 and 9 show the results for two different energy
ranges.

The two bound states are clearly visible and located at £ = 1.19, 1.27 whereas the
continuum of scaftering states extends from £ = 1408 to E = 6. The continuum is
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composed of overlapping three free and two bound/one free contributions and the edges of
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Figure 10. Double-precision coefficients a,, &, for the S = 1 Heisenberg model at X = 0.75x.

these separate continua are visible in the density of states as internal Van Hove singularities.



Three-magnon excitations in ferromagnetic spin-3 chaings 10089

B9

ES3

WK
X,
S WK,

xxxx X
2% X3

0
0.0¢ 025 a.50 075 1.00
K

Figure 11. Three-magnon spectrum of the § = 1 Heisenberg model. The energy is in units of
¢ and X is in units of 7. The shaded regicn indicates the various scattering-state continua, the
solid lines outside this region are bound states, and the dashed line inside this region indicates
a resonance,

Our results are in accord with those found by Millet and Kaplin [18] for § = 1. For smaller
values of X, the upper bound state moves up in energy and eventually enters the continuum.
The lower bound state moves down in energy and always remains below the continuum
down to X = 0. The disappearance of the upper bound state can be seen directly in the
coefficients. Figure 10 shows the recarsion coefficients at £ = 0.757% where it is evident
from the asymptotic behaviour that only one bound state remains.

The general features can be summarized by plotting the bound-state energies against K
across the Brillovin zone as in figure 11. When the bound state enters the continuum, it
becomes a resonance and the density of states exhibits a peak at this energy. The resonance
is represented by the dashed line and the bound states by the solid lines. The continuum is
indicated by the shaded region. The two bound/one free continuum determines the lower
edge for all K whereas the three free continuum determines the upper edge.

These results for the § = 1 Heisenberg model correspond to the value of g = 1.5
ag given by (6) and are independent of g; since the unphysical ket with three deviations
on the same site decouples from the rest. As the value of g; is changed towards that of
the SU(2) integrable model in (3), gz = (45 —1)/(25 — 1), the gap between the upper
and lower bound states at K = s goes to zero and the resonance inside the continuum
sharpens up into a delta function. The position of the bound states both inside and outside
the continuum agree with those obtained using the Bethe ansatz [11]. This behaviour
agrees with the conjecture of Haldane that the bound state is completely decoupled from



10090 B W Southern et al

0.00 025 : 0.50 .75 1.00
K

Figure 12, Three-magnon spectrum of the § = # Heisenberg model. The energy is in units of
ay and K is in units of . The shaded region indicates the various scattering-state continua, the
solid lines outside this region are bound states, and the dashed lines inside this region indicate
TESONances.

the continuum for this special value of g,. For this integrable model, there are two separate
two bound/one free continva corresponding to the upper and lower two-magnon bound-
state branches [19]. These continua overlap the three free continnum completely and thus
determine both the upper and lower edges of the scattering-state solutions.

For larger values of S, the details of the spectrum will depend on the value of g5 as well.
Figure 12 shows the spectrum for the S = % Heisenberg model. There are two bound states
below the continuum near K = m with the upper branch becoming a resonance at smaller
K. However, there is an additional resonant peak at higher energies across the entire zone.
Figure 13 shows the spectrum for the § = % integrable model where ga, g3 have the values
in (5). The resonances sharpen up as these values are approached and the highest resonance
moves up in energy and eventually lies entirely above the continuum. The upper branch of
the lower bound state exists both below and above the continuum and passes right through
it. The energies of the three bound-state branches completely agree with the Bethe ansatz
values obtained by Haldane.

The three-magnon bound states form a continuous branch over min(3, 25) zones and
are completely decoupled from the three-magnon continua if and only i

_45-1 _632-—-6.S'+l
“25-1 BT agoss+r
Changing either g2 or gz away from these special values produces gaps between the bound-
state branches at X = 0, » and broadens the branch inside the continuum into a resonance.

82
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Figure 13. Three-magnon spectrum for the S = 2 integrable model. The energy is in units of &
and X in units of 7z, The solid lines are bound states and the shaded region is the scattering-state
continuum.

Qur approach can be used to study the nature of the excitations for any values of §
and the g,,. In the general case, with S = 1, the bound states and the continua interact to
produce resonances inside but there are two bound states below the continua near K = .
These states are separated by a gap which decreases as S increases.

4. Summmary

We have used the recursion method to obtain information about the nature of three-magnon
excitations in general S-spin chains. Special features of the excitations are associated with
the integrable models. The method could also be used without difficulty to study systerns
with unjaxial anisotropies in the Hamiltonian and higher m-magnon excitations as well.

- Experimental observation of these excitations by direct measurement does not appear
to be easy. Torrance and Tinkham [27] have observed multi-magnon bound states in a
5= % linear chain compound. They explained the experimental resuits using a model with
both a Iongitudinal and transverse anisotropy in the exchange interaction. The transverse
anisotropy leads to a coupling between different m-magnon excitations which allows the
three-magnon bound state to be excited by photon absorption. Qur results could be used
a starting point for a more detailed analysis of the effects of transverse anisotropies in the
exchange terms. '
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